
J .  Fluid Me&. (1971), vol. 45, part 3, pp .  417440 

Printed in, Great Britain 

417 

An elastic sublayer model for drag reduction by dilute 
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Further evidence of a universal maximum drag reduction asymptote is presented. 
In  the elastic sublayer model, inferred therefrom, the mean velocity profile 
during drag reductionis approximated by three zones: the usual viscous sublayer, 
an elasticsublayer where the mixing-length constant is derivedfrom themaximum 
drag reduction asymptote, and an outermost region with Newtonian mixing- 
length constant. Upon integration the model yields a friction factor relation, 
parametric in elastic sublayer thickness, which properly reproduces the known 
features of turbulent dilute polymer solution flow. The dependence of elastic 
sublayer thickness upon flow and polymeric parameters is inferred from experi- 
mental data revealing two hitherto unknown relationships: namely that on 
Prandtl co-ordinates, lip ws. log Rep,  the difference in slope between a polymer 
solution and solvent is proportional to the square root of molar concentration and 
to the three-halves power of backbone chain links in the macromolecule. The 
proportionality constant in the preceding relationship is approximately the same 
for several different polymer species of carbon-carbon or similar skeletal structure 
in various thin solvents; there is an indication that this constant further depends 
upon the product of solvent viscosity times the cube of the effective bond length 
per chain link of the polymer species. Some recent results regarding the onset of' 
drag reduction are also summarized. 

1. Introduction 
Toms phenomenon (Toms 1948), drag reduction by dilute polymer solutions in 

turbulent pipe flow, has thus far been studied experimentally in three echelons of 
increasing detail: pressure drop versus flow rate or gross flowmeasurements, mean 
velocity profiles and turbulence structure measurements. Gross flow studies 
(e.g. Savins 1964; Elata & Tirosh 1965; Virk et ab. 1967; Hershey & Zakin 1967; 
Liaw 1968) indicate the existence of three regimes of turbulent flow, in order of 
increasing flow rate: (i) A regime without drag reduction wherein the polymer 
solutions obey the same friction factor relation as solvent. (ii) A regime with drag 
reduction in which the friction factor relation obeyed by a given solution depends 
upon all identifiable polymeric parameters-the polymer-solvent system, 
polymer molecular weight and concentration. The demarcation between regimes 
(i) and (ii), i.e. the onset of drag reduction, is usually quite well defined. (iii) An 
asymptotic regime which ultimately limits the maximum drag reduction possible 
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in Toms phenomenon. The friction factor relation for this ultimate asymptote is 
independent of polymeric parameters. Of the mean velocity profiles reported to 
date (Elata, Lehrer & Kahanovitz 1966; Virk et al. 1967; Goren & Norbury 1967; 
Wells, Harkness & Meyer 1968; Patterson & Florez 1969; Seyer & Metzner 1969), 
most have been measured a t  conditions of relatively low drag reduction in the 
‘polymeric’ regime (ii) above. On u+ vs. yf co-ordinates, these polymer solution 
profiles exhibit a characteristic shift upward from but parallel to the semi- 
logarithmic Newtonian law of the wall over that portion of the pipe radius, the 
outer flow, where the latter applies. The structure of turbulence during drag 
reduction has been studied to the extent of a few turbulent intensity profiles and 
kinetic energy spectra (Virk et al. 1967; Wells et al. 1968; Spangler 1969; Seyer & 
Metzner 1969) but the results are, as yet, inconclusive. 

Prom a theoretical standpoint the mechanism of drag reduction is still obscure 
but two significant impressions appear to have emerged. First, that the pheno- 
menon stems from some kind of a time domain interaction between the polymeric 
solute and the turbulent flow field and, secondly, that the polymer-turbulence 
interaction, however it occurs, most significantly affects the region very close to 
the bounding wall. Concerning the former, an association of drag reduction with 
‘visco-elasticity ’ dates to some early papers on the subject (Savins 1964; 
Metzner & Park 1964; Wells 1965) but probably the most plausible physical 
connexion, in terms of macromolecular strain energy, is due to  Walsh (1967). 
The experimental support for this is provided, albeit indirectly, by the observa- 
tion that at the onset of drag reduction the reciprocal wall shear rate, a time- 
scale characteristic of the wall turbulence, is of the order of magnitude of the 
terminal relaxation time of the macromolecule (Elata, Lehrer & Kahanovitz 
1966; Fabula, Lumley & Taylor 1966; Hershey & Zakin 1967) as calculated from 
linear visco-elasticity theory (Rouse 1953; Zimm 1956) even though the size of 
the macromolecule is much smaller than, of order 10-3 times, that of the typical 
dissipative eddy (Virk et al. 1967). The relevance of the wall region, first 
anticipated by Oldroyd (1948) and almost universally accepted since, is supported 
and clarified by two kinds of experimental evidence. Mean velocity profiles at  
low drag reduction indicate that the region affected by the macromolecules lies 
closer to the wall than the inner edge y+ N 50 of the outer flow. Recent data in 
rough pipes (McNttlly 1968; Spangler 1969; Virk 1971) show that the onset of 
drag reduction is virtually unaffected by the presence (hydraulically smooth flow) 
or absence (fully rough flow) of a viscous sublayer which suggests that the 
polymer-turbulence interaction starts further from the wall than y+ N 5. 
Together, these imply that the buffer zone 5 < y+ < 50, of known importance 
(Laufer 1954) in the energetics of turbulent Newtonian pipe flow, is where the 
processes responsible for drag reduction commence. The same qualitative result 
has also been inferred from theoretical arguments concerning possible changes in 
wall region energy spectra during drag reduction (Lumley 1967, 1969). 

Despite the aforementioned advances there is still no satisfactory description 
of the numerous variables which influence drag reduction and the purpose of 
this paper is to present an approximate, physically motivated, mean flow model 
for Toms phenomenon from which the dependence of drag reduction upon flow 
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and polymeric parameters can be ascertained. The model is based on a three-zone 
scheme for the mean velocity profile (Virk, Mickley & Smith 1970) in which drag 
reduction was associated with an ‘interactive zone’ or ‘elastic sublayer’ juxta- 
posed between a viscous sublayer and a Newtonian outer flow. In  the present 
work the previous mean velocity profile is integrated to yield a general friction 
factor relation that is parametric in the thickness of the elastic sublayer. Elastic 
sublayer thickness is then related to macromolecular parameters (concentration, 
molecular weight and backbone chain links) by inference from experimental 
measurements. The empirical relations so obtained are partially interpreted and 
somewhat extended by a brief theoretical analysis of the polymer-turbulence 
interaction. Finally, the model devised is compared with previous schemes 
(Oldroyd 1948; Elata et al. 1966; Meyer 1966; Seyer & Metzner 1969) and some 
points concerning its practical application are noted. 

2. The elastic sublayer model 
2.1. Asymptotic friction factor relations 

In  friction factor co-ordinates, the region of Toms phenomenon is bounded by 
asymptotes of zero and maximum drag reduction, both independent of poly- 
meric parameters, and any general mean flow model must reduce to these 
asymptotes at the appropriate extremes. The zero drag reduction asymptote is, 
of course, the well known Prandtl-von K$rm&n law for Newtonian turbulent 

(1) pipe flow. 

where f and Re are the usual Fanning friction factor and diametral Reynolds 
number respectively. The maximum drag reduction asymptote, first reported by 
the present author (Virk et al. 1967), has since been observed in several indepen- 
dent studies the results of which are correlated (Virk et al. 1970) by 

The correlation (2) was based mainly on data for aqueous polyethyleneoxide 
solutions but in the interim since its development maximum drag reduction data 
have been reported in pipe flow with numerous different polymers dissolved in 
aqueous and in organic solvents (Liaw 1968; Whittsitt, Harrington & Crawford 
1968; Virk & Baher 1970; Virk 1971). Moreover, the above dilute polymer 
solution asymptote also appears to limit the maximum drag reduction achieved 
with complex soap solutions (White 1967). This further evidence of a universal 
maximum drag reduction asymptote is illustrated in figure 1, a friction factor 
plot with Prandtl co-ordinates 1/f” vs. log (Ref:); corresponding experimental 
details are given in table 1. The more recent data can be seen to agree well with the 
solid line representing the earlier correlation. It is also worth noting that the 
pipe flow relation (2) permits the inference of corresponding asymptotes in 
external flow configurations (Virk et al. 1970) and there are the most preliminary 
indications that such asymptotes occur in turbulent boundary-layer flow past a 
flat plate (Fruman & Sulmont 1968) and on a free spinning disk (Hoyt & Fabula 
1964; Gilbert & Ripken 1969). 

l/f: = 4.01og,, (Be f 9) - 0.4, 

l/f& = 19.O1og1, (Refs) - 32.4. (2) 

27-2 
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2.2. The three zone mean velocity proJile 

Mean velocity profiles prevailing under asymptotic conditions can be inferred 
from the corresponding friction factor relations. Transformation of the corre- 
lation (2) yields the mean velocity profile 

u+ = 11*7lny+- 17.0, (3) 

ultimately attained at  maximum drag reduction. This ultimate profile is note- 
worthy in that it shares a tri-section, at (U+, y+) = (11.6, 11.6), with the usual 

u+ == y+ viscous sublayer 

I I I I I I I I I  I I I I I I I I  

103 

Ref* 
104 

FIGURE 1. Further cvidcnce of a maximum drag reduction asymptote in pipe flow. Symbols 
are nnmbered to correspond t o  entries in table 1. 0, 1 ;  0, 2; *, 3;  0 ,  4; 0, 5 ;  0, 6 ;  
v,  7 ;  0,8. 
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Entry 

1 

2 

3 

4 

5 

6 

7 

8 

Notes 

Source 

Whittsitt et al. (1968) 

Virk & Baher (1970) 

Virk (1971) 

Liaw (1968) 

White (1967) 

Solvent 

Water 

Water 

Water 

Water 

Benzene 

Tolucne 

Toluene 

Water 

M 
Polymer x 10-6 

GGM (0.22) 

PAMH (3) 

PAM 4.7 

12.5 

PEO 5.5 

8.0 

PEO 3.1 

PDMS 10.7 

5.6 

PCIP 2.2 

CTAB-Naphthol 
(complex soap) 

c Pipe I.D. 

w.p.p.m. (om) 

1250 0.457, 
1.06 

250 0.457, 
1 a06 

300, 0.953 

40, 0.846 
1000 

100 

100 
30, 0.846 

100 0.846 

80, 0.083, 
200 0.166, 

0.272 

30 0.083, 
0.166, 
0.272 

500 0.083, 
0.166, 
0.272 

200 0.083 

500 0.228, 
0.635, 
1.27, 
1.41, 
3.81 

Entries are ordered to correspond with legend of figure 1. 
CTAB-Naphthol. Equimolar Cetyltrimethyl-ammonium-bromide and 1 -Naphthol. 
Numbers in parentheses are estimated, not experimental. 

TABLE 1. Summary of recent maximum drag reduction data 

Polymer notation 
Spccies 
GGM 
PAM 
PAMH 
P C I P  
PDMS 
PEO 
PIB 
PMMA 

Guar gum 
Polyacrylamide, homopolymer 
Polyacrylamide, hydrolysed 
Polycisisoprene 
Polydimethylsiloxane 
Polyethyleneoxide 
Polyisobutylene 
Polymothylmethacrylate 

m 
b 

molecular weight per backbone chain link. 
offective bond length (unperturbed) A. 
Values are from Kurata & Stockmayer (1963) except 
Kurath 1964) and PEO (Beech & Booth 1969). 

[7] intrinsic viscosity in decilitres/gram. 
M weight average molecular weight. 
N 
II 

number of backbone chain links per molecule. 
intrinsic slope increment defined by equation (17). 

m b 
243 20 

35.5 5.2 
(35.5) 5.2 
22.7 3.8 
30 3.9 
14.7 3.2 
28 3.9 
50 4.5 

for GGM (after Koleske & 
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and Newtonian law of the wall 

U+ = 2-51ny++5.5, (5) 

of which (5) is related to (1) as (3) is to ( 2 ) .  Figure 2, U+vs.log y f ,  shows experi- 
mental mean velocity profiles obtained during drag reduction (Elatzl et al. 1966; 
Virk et al. 1967; Goren & Norbury 1967; Patterson & Florez 1969; Seyer & 
Metzner 1969). The latter two sets of data, unavailable at the time of the earlier 

I I I I I I l l  I I I I I I l l 1  I I I 1 1 1 1 1  

I I- 

2o t- 

1 ° L  0 1 00 

Viscous 
sublayer (4) 

10' 102 1oj 
A 104 

Yf 
FIGURE 2.  Experimental mean velocity profiles during drag reduction. Numbered lines 
correspond to equations in text. Symbols are numbered to correspond to entries in table 2.  
A,  1; A, 2 ;  0, 3; W ,  4;  V, 5 ;  0, 6;  +, 7;  0, 8; 0 ,  9. 

work from which the figure is adapted, are each separately noteworthy; Patterson's 
profiles are amongst the first such in organic solvents while Seyer's data represent 
the only available results at  (or near) maximum drag reduction. From figure 2 it  is 
evident that the experimental profiles are bounded by the asymptotic profiles 
(5) and (3). At intermediate but low drag reductions the data show the parallel 
upshift relative t o  solvent (5); as drag reduction increases there is a tendency 
towards the ultimate profile (3) .  Based on this purely experimental evidence it is 
reasonable to suppose that in the general case of drag reduction the mean velocity 
profile consists of three segments, which are, proceeding from pipe wall to pipe 
axis, (1) a viscous sublayer, akin to Newtonian; ( 2 )  an interactive zone, charac- 
teristic of drag reduction; (3) an outer region, 'Newtonian plug ', with Newtonian 
mixing-length constant. The main feature of this scheme is the interactive zone, 
here renamed the elastic sublayer, associated with drag reduction and because the 
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maximum drag reduction asymptote appears to be universal the mean velocity 
profile in the elastic sublayer is assumed always to be a segment of the ultimate 
profile (3). The extent of drag reduction then depends solely upon the location 
of the outer edge of the elastic sublayer, y:, inasmuch as the interface, y:, 
between the viscous and elastic sublayers is uniquely defined by the trisection of 

Pipe 
M G I.D. 

Entry Source Solvent Polymer x10-6 w.p.p.m. (em) R e f s  lif4 S, 

1 Elate et al. Water 
2) (1966) 
3 Goren & Norbury Water 
4 )  (1967) 
5 Patterson S: Florez Cyclo- 

6 Seyer & Metzner Water 
7 )  (1969) 
8 \  Virk et al. Water 
9/  (1967) 

(1969) hexane 

GGM (0.5) 

PEO (5) 

PIB 0.5 2,000 
{ ;: 

PAMH (3) 1,000 

PEO 0.69 (i:::: 
{ 1,000 

5.07 20,500 
14,500 

5.08 6,200 
5,300 

2.54 3,200 

2.54 780 
1,680 

3.21 2,700 
8,950 

22.3 0.32 
28.2 0.74 
24.2 0.64 
25.2 0.94 
17.3 0.27 

23.2 1.02 
29.2 1.34 
13.5 0 
19.9 0.29 

Notes 
Entries a,re ordered to correspond with legend of figure 2. 
Polymer abbreviations as noted below table 1. 

Molecular weights in parentheses are order of magnitude estimates only since no data 
given in original. 

SF = [(f,/f,)&- l],,,t is the fractional slip, a measure of drag reduction, defined as the 
fractional increase of l/f* with polymer solution relative to Newtonian at the same R e f  4 in 
the givcn pipe. 

TABLE 2. Summary of mean velocity profile data 

equations (3), (4), and ( 5 ) .  As drag reduction is decreased, y$ -+ y$ and the model 
tends to the Taylor-Prandtl Newtonian scheme; as dra.g reduction is increased, 
yz -+ R f  and the ultimate profile tends to prevail over the entire cross-section. At 
intermediate drag reductions the profile displays an ‘effective slip ’, incurred 
across the elastic sublayer, whereby the outer, Newtonian plug, region is parallel- 
shifted upwa.rd relative to solvent ( 5 ) .  The model thus reduces to  the proper 
limiting cases at zero and maximum drag reduction and, between these limits, 
is consistent with all available experimental observations. 

The utility of the above, highly idealized, scheme clearly hinges upon a viable 
description of elastic sublayer extent. To this end, the model is next integrated to 
provide a general friction factor relationship in terms of y$; a relationship 
between y,‘ and the macromolecular and flow parameters affecting drag reduction 
is then inferred from experiments. 

2.3. Integration for friction factor 

The non-dirnensional velocity profile, U+ (y+), for the model outlined possesses 
three segments u+ = yf: 0 < yf < y;, 

U+ = A,lny++B,: y: < y+ < y$, 

U+ = A ,  In y+ + B,: y t  < y+ < R f .  
( 6 b )  

(6c) 
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In  the above, U+ = (U/u,) and yf = (yu,/v) are the usual law of the wall para- 
meters, U being the mean axial velocity a t  distance y from the pipe wall; u, is 
friction velocity and u kinematic viscosity. Numerical subscripts 1, 2 ,  3 refer 
respectively to the viscous sublayer, elastic sublayer and Newtonian plug; 
subscript v refers to the interface between zones 1 and 2 while subscript e refers 
to the interface between zones 2 and 3. R+ is the value of y+ on the pipe axis. 
A and B are the constants associated with a semi-logarithmic segment and to 
stress their universality, A,, B, are renamed A,, B, (subscript rn to signify an 
association with the maximum drag reduction asymptote) and A, renamed A, 
(subscript n for Newtonian). Appropriate current numerical values are (Am, BwJ 
= (11.7,- 17.0) and (An, B,) = (2.5, 5.5), the slopes (A,, A?&) being the recipro- 
cals, respectively, of the ultimate and Newtonian mixing-length constants, 
(Xm,, X , )  = (0-085, 0.40). Note that B, is defined by the intersection of (6b) and 

By definition, the average velocity U,, across the pipe cross-section is 

where Q is the volumetric flow rate and [ = (y/R) the radius-normalized distance 
from the pipe wall. In  terms of the friction factor, with the integral on the right- 
hand side of (8) decomposed by segments using (6a, b, c), 

All three integrals on the right-hand side of (9) can readily be evaluated. The first 
integral, i.e. the viscous sublayer, contributes a fractional amount (2y$'/Re) 
< 1 to UZT and therefore little error is incurred by taking tV - 0 for analytical 
simplicity. The latter two integrals on the right-hand side of (9) are of an identical 
form and applying the proper limits, collecting terms and substituting the 
relevant constants one obtains 

U&, = A,lnR++ B, - gA,+ (Am- A,) [In(&$+) - ZEe( l  - &)I + B,-B,. (10) 

Equation (10) is the basic friction factor relation resulting from our mean flow 
model, expressed in terms of the outer edge &,, of the elastic sublayer. It is 
readily shown that (10) transforms to the appropriate asymptotes: 

U;, = A,lnRf+B,-#A,, t e , - t O ;  (1 l a )  

U&, = A,lnR++Bm-$A,,, te;e-fl; ( 1 l b )  

where (-+ 0 is taken to mean y,' .+ y$. Between the limits 0 < te < 1 the friction 
factor, and hence drag reduction, depend upon te through the square bracket on 
the right-hand side of (10). Of the two terms therein the logarithmic term domi- 
nates, as shown in table 3, and if 2&(l-  ice) is neglected in comparison with 
In (&,&!+) the general friction factor relation simplifies to: 

U& = A ,  l nR++B, -~A,+(A, -A , ) ln (y~ /y~) ,  y: < y,' < R+. (12) 
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2.4. Relation to polymeric parameters 

A relationship between elastic sublayer thickness, y$, and the flow and poly- 
meric parameters affecting drag reduction is suggested by two experimental 
observations valid for dilute solutions of linear, random-coiling macromolecules 
in the polymeric regime. First, for a given polymer and solvent, the onset of 
drag reduction occurs essentially independent of polymer concentration and 

R+ + 100 300 1000 3000 10,000 

- - 0.008 0.005 0.004 
f;, J. 
0.01 
0.03 - 0.027 0.017 0.013 0.010 
0.10 0.084 0.057 0.042 0.034 0.028 
0.30 0.163 0.123 0-097 0.059 0,049 
1.00 0.325 0.262 0.217 0.187 0.162 

TABLE 3. Selected values of [2& (1 - $&)/In (t8 R f ) ]  

- - - - - 

second, following onset, the polymer solutions describe approximately straight 
lines in Prandtl co-ordinates, U& us. In R+, with slopes increasing progressively 
with concentration. Physically these indicate that two kinds of factors influence 
drag reduction; those, reflected by onset and the affine straight line behaviour 
thereafter, which are independent of concentration and can be associated with 
the ‘excitation’ of an individual macromolecule by the turbulent flow field and 
those, reflected by the slopes, which appear related to the ‘amount ’ of polymer 
present. A function for elastic sublayer thickness that contains these two 
factors in separable form and applies for all R+ is 

ln(y,f/y$) = 0, (R+/R+*) < 1; (13a) 

= $ln (R+/R+*); (13b) 

= In (R+/y$), (R+/R+*) > (R+*/yV+)l/II.--I. (13c) 

In equation (13b), the operational member of the set, the entity $-represents the 
‘amount’ factor, which, by hypothesis, must depend solely on the molecular 
description of a polymer solution. The ln(R+/R+*) term, where R+* is the value of 
R+ at the onset of drag reduction, describes the ‘excitation ’ factor which depends 
both upon flow parameters and such polymeric parameters as are associated with 
the excitation of amacromolecule. Substitution of equations (13) into the general 
friction factor relation (10) readily demonstrates that the elastic sublayer func- 
tion devised yields, in idealized form, all of the gross flow regimes observed in 
Toms phenomenon: (13a) results in the Newtonian friction factor asymptote 
(1 1 a)  and hence no drag reduction prior to onset; (13 b)  yields the polymeric 
regime with the characteristics noted above; while (13c), invoked for $ > 1, 
results in the maximum drag reduction asymptote (1 1 b) .  Focusing on the poly- 
meric regime and substituting (1  3 b)  into the simplified friction factor relation 
(12) therein one obtains 

U& = ( A ,  + 6) In R++B,- ;A, - Sln R+*, (14) 
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where, by definition s = @,-An)$. (15) 

The slope increment 8, which is the same as the purely molecular entity 9 save 
for the constant, and universal, multiplier ( A ,  - An), is the difference between 
the slopes of polymer solution and solvent friction factor relations in Prandtl 
co-ordinates. Both sand R+* aredirectlfaccessible from gross flow measurements. 

The factors which represent the 'amount' of polymer vis-&is drag reduction 
are not obvious a priori but polymer concentration is evidently one such. Recent 
experiments concerning the effect of polymer concentration on drag reduction 
(Virk & Baher 1970) have indicated that for a given polymer, solvent and pipe 
the slope increment 6 varies approximately as the square root of polymer 
concentration, i.e. 

8 oc CB. (16) 

10-1 100 10' 1 02 103 104 
to-1 

c, w.p.p.m. 

FIGURE 3. Effect of polymer concentration on slope increment for the polyethyleneoxide- 
water systcm. Corresponding experimental information is in table 4, symbols numbered as 
follows: 0, 0 ,  1-5; 8 , 6 ;  U, E, 7-9; 0, +, 10, 11; A, A, 12-14. The highest molecular 
weight polymer used in a given pipe is denoted by hollow symbols, the next highest by 
solid symbols and so on alternately. Data for polymer N 80, only, have been shifted down- 
ward by a factor of 2 to prevent crowding. 

However, the experiments from which (16) was inferred were of a preliminary 
nature and a more comprehensive collection of data concerning the relationship 
between S and c is presented in figures 3 and 4. Figure 3 displays data obtained 
by the present author with the polyethyleneoxide-water system; corresponding 
experimental information is summarized in table 4. Each point on figure 3 
represents a set of flow rate versus pressure drop data run with a given polymer 
solution and pipe: these were plotted in Prandtl co-ordinates and the slope, 
[d( l/f~)/dlog,, (Ref:)] = 1.626 [dU&/dlnR+], obtained in the polymeric regime 
after onset but prior to the ultimate asymptote (if attained). For each pipe a 
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friction factor relation for solvent was also established experimentally, being 
very close to the Prandtl-K&rm&n law in all cases, and the slope increment 6 was 
then the difference (8, - X,) between polymer solution and solvent slopes in the 
same pipe. As can be seen from figure 3 and table 4, a range of concentrations were 
studied for each polymer and pipe, several molecular weight levels were investi- 
gated and various diameter pipes were used. All experiments were performed in 

Pipe I.D. Polymer [rl M N n 
Entry 1 (cm) designation dZ/g x lo-* x 10-4 x 10+6 

1 0,292 N10 0.73 0.092 0.62 0.0081 
2 N 80 1.75 0.28 1.9 0.085 
3 N 750 3.38 0.63 4.3 0.24 
4 N 3000 3.90 0.76 5.2 0.34 
5 W301 18.8 5.6 38 - 

6 0.457 W301 18.0 5.2 35 2.93 

7 0.846 N10  0.88 0.12 0.82 0.0145 
8 N750 3.1 0.57 3.9 0.165 
9 W301 18.5 5.5 37 3.4 

10 0.945 W205 5.5 1.27 8.6 0.60 
11 W301 18.0 5.2 35 3.3 
12 3.21* N10  0.66 0.080 0.54 0.0035 
13 N3000 3.61 0.69 4.7 0.15 
14 W 301 20.1 6.1 41 2,5 

Notes 
* Recirculating system ; molecular characterization refers to samples before use. 
[?I, M ,  N ,  II as noted below table 1. 
All values of M are obtained from [r] via the experimental correlation of Shin (1965) for 

the PEO-water system. 

TABLE 4. Some drag reduction results for the polyethyleneoxide-distilled water system 

once-through flow systems except for those with the 3.21 cm1.D. pipe which was 
part of a recirculating system. In figure 3: (1) The effect of polymer concentration 
on slope increment can be observed by following data for a given polymer and 
pipe. In all cases, covering concentration ranges of from 8 to 3+ decades, lines of 
slope + apply within experimental error, upholding the square-root law (16). 
(2) The effect of polymer molecular weight can be noticed from sets of 6 vs. c 
obtained with different homologues in a given pipe. While all homologues yield 
the same slope of +in the chosen co-ordinates, the proportionality constant 
between 6 and c* increases strongly with increasing molecular weight. (3) The 
effect of pipe diameter upon the 6 us. c relationship appears to be small. This 
conclusion is not readily apparent from figure 3 because the polymers employed 
in the various pipes differed somewhat in molecular weight which latter is itself an 
important variable. However, if values of 6 at a given concentration (say 
100 p.p.m.) are plotted against a molecular parameter (say intrinsic viscosity), 
results from all pipes from 0.292 to 0-945 cm I.D. arrange themselves on the same 
curve whereas data from the 3.21 cm I.D. pipe yield values of 6 somewhat lower 
than the rest. It is believed that this latter is due to recirculation which causes 
polymer degradation and hence an in situ molecular weight lower (but by an un- 
known factor) than that quoted in table 4 for the original, undegraded, samples. 
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Some S vs. c results derived from the data of other workers for various polymer- 
solvent systems are shown in figure 4 of which, for clarity, part (a )  refers to 
aqueous and ( b )  to organic solvents; corresponding experimental information is 
summarized in table 5 .  On the whole the three features noted in connexion with 
figure 3 are also evident on figure 4 and in particular it can be seen that each set of 

- - 

data is well represented by a line of slope Q, further upholding (16). Attention 
should also be drawn to the more noteworthy aspects of individual entries. 
Whittsitt et al. (1968) cover a most impressive range of pipe diameters, 0.457 to 
15.2 em, and their data thus provide a striking illustration of the relatively weak 
influence of pipe diameter upon the 6 vs. c* relationship. Pruitt, Rosen & Craw- 
ford's (1966) data for the same PEO polymer in two solvents, water and 0.6 
molar K,SO,, are significant in that the expanded conformation of PEO in water, 
a good solvent, is markedly collapsed by addition of K,SO,, as reflected in this 
case by an intrinsic viscosity in 0.6m K,SO, about half that in water. This 
reduction in macromolecular coil size was found to alter the onset of drag reduc- 
tion (same pipe) from R+* N 180 in water to R+* N 280 in O.6m K,SO,, but 
appears to have little effect upon the 6 us. ci- relationship, as can be seen from 
figure 4(a ) .  Shin's (1965) results were all obtained in turbulent Couette flow 
between concentric cylinders with the outer rotating and hence indicate that the 
square-root law applies also to flow configurations other than pipe flow. Finally, 
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the data of Liaw (1968) are noteworthy for the number of polymer-solvent 
systems studied, many of these for the first time ever with respect to drag 
reduction. 

The experimental evidence presented in figures 3 and 4 indicates that the 
square-root form of (1 6) may be accepted with some confidence for drag reduction 

Entry 

5 
6 

10 
11 

Notes 

Source Pipe I.D. (cm) Solvent 

0-457, 1.06, Water 
Whittsitt et al. (1968) ‘4-11, 15.2 i 0.457. 1.06, 4.11 Water 

0.457 { o.457 
Pruitt et al. (1966) 

McNally (1 968) 2.00 
Virk & Baher (1970) 0,945 

Ro 2.500 cmt 
Shin (1965) {R< 2.283 cmt 

Gap 0.217 cmt 
Rodriguez et al. (1967) 1.30 
Toms (1948) 0-404 

0.272 
(0.272 

Water 
0.6 m K,SO, 
Water 
Water 
Water 
Water 
Cyclohexane 
Cyclohexane 
Chlorobenzene 
Benzene 
Benzene 

Liaw (1968) 
0.272, 1.3 Toluene 
0.272 Toluene 
0.272 Toluene i 0.083 Toluene 

Polymer 
species 

PAMH 

GGM 
PEO 
PEO 
PEO 
PAM 
PEO 
PEO 
PIB 
PIB 
PMMA 
PEO 
PEO 
PCIP 
PDMS 
PDMS 
PDMS 

M 
x 10-6 

(3) 

(0.22) * 
0.83 
0.83 
3.4 
4.7 
4.7 
0.60 

0.93 
2-3 
0.75 
0.48 
2.2 

10.7 
5.6 
0.30 

12 

N 

9 

0.09 
5.7 
5.7 

x 10-4 

24 
13 
32 

43 
4.1 

3.3 
4.6 
5.1 
3.3 
9.7 

36 
19 

1.0 

r1 
x l O f 6  

0.9 

0.075 
0.51 
0.51 
2.75 
1.55 
4.9 
0.22 
6.4 
0.080 
0.32 
0.33 
0.20 
0.50 
4.8 
1.45 
0.027 

Polymer abbreviations and M ,  N ,  ll as noted below table 1. 
Numbers in parenthesis are estimated, not experimental. 
* Estimate for their sample kindly provided by Dr Whittsitt. 
t Couette flow between concentric cylinders with outer rotating. 

TABLE 5. Drag reduction results for various polymer-solvent systems 

by dilute solutions of random-coiling polymers. Further, for a given polymer- 
solvent pair, the proportionality constant between 6 and ch appears to be essen- 
tially independent of pipe diameter and might therefore be considered to charac- 
terize completely the effect of polymer concentration upon slope increment for 
solutions of that pair. The concentration range over which (16) applies is not yet 
fully defined. There appears to be no lower limit in that (16) holds as c+ 0 for as 
long as a slope difference can meaningfully be detected; however as c-+co, 
progressing from dilute to concentrated solutions, values of 6 do eventually 
increase more slowly than ch (see e.g. the N80 data in figure 3) with a non- 
dimensional concentration c[v]  N 0.5 tentatively representing this upper limit 
for application of (16). To summarize these findings, (16) is recast as an equation: 

In (17), A ( = S/XJ is the slope increment normalized by solvent slope to render it 
independent of flow configuration, friction factor definition and the base to 
which logarithms of Ref 4 or R+ are taken while (JVCIM) is polymer concentration 
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in molecules per unit mass of solution, JV being Avogadro’s number, M mole- 
cular weight and C the conventional mass concentration in gm polymer/gm of 
solution (i.0. times the concentration in w.p.p.m.). The proportionality 
constant, II, thus represents a fractional slope change per macromolecule added 
and might therefore properly be termed an ‘intrinsic ’ slope increment. Values of 
II derived via (17) from figures 3 and 4 are listed in the final columns of both 
tables 4 and 5 and it will be noticed that the intrinsic slope increment varies 
widely from entry to entry indicating, as might be expected, that the polymeric 
entity $ (or 6) depends also upon molecular parameters other than concentration. 

- 

10-9 
103 1 0 4  105 1 06 

N 

FIGURE 5. Relationship between intrinsic slope increment and number of backbone chain 
links for some linear random-coiling macromolecules. 0, GGM, water; 0, PAM, water; 
0, PCIP,  toluene; 0, PDMS, toluene; 0, PEO, water, benzene, 0.6 m K,SO,; A ,  PIB, 
Cyclohexane ; v, PMMA, chlorobenzene. 

In  seeking these latter, the intrinsic nature of II entitles one to expect, at  least 
initially, that it be related to some characteristic of the macromolecule itself. 
The single most important configurational parameter associated with the unique 
properties of macromolecules is the number of chain links, N ,  in the primary 
polymeric backbone; for linear (unbranched) macromolecules N is equal to the 
molecular weight divided by a constant factor, m, which is characteristic of the 
species and can be derived directly from the chemical structure of its repeating 
unit; e.g. m = 14.7 for polyethyleneoxide. The number of backbone chain links 
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possessed by each of the polymers included in figures 3 and 4 are noted in the 
penultimate columns of tables 4 and 5 .  For these data the variation of intrinsic 
slope increment with backbone chain length is shown graphically in figure 5,  a 
double logarithmic plot of IT us. N .  In  this figure symbols are used to distinguish 
the various polymer species with the associated solvents indicated in the legend: 
the solid points (of whatever symbol) denote cases in which values of II were 
obtained from polymer concentration ranges of a decade or more and values of 
N were based on positive polymer characterization while hollow points represent 
cases in which one or the other of these conditions was not fulfilled. Formally, the 
n, N relationship should be sought for each species-solvent combination but 
perusal of figure 5 shows that, except for guar gum, all of the data lie on approxi- 
mately the same curve, a straight line of slope N 8 which implies a simple power 

(18) 
law of the form 

Equation (18) with a proportionality constant K = (2.3 & 0.8) x 10-l4 is indicated 
over the range 0.5 x lo4 < N < 0 5  x lo6 by the solid line in figure 5 .  That all of 
the polymer species involved, which include most of the random-coiling polymers 
thus far studied in the drag reduction literature, should obey much the same 
II us. N relationship is mildly remarkable and establishes the number of backbone 
chain links as a relevant molecular parameter. However, the _+ 30 % uncertainty 
in the above collective value of K admits to considerable variation on a scale 
finer than can presently be detected and the guar gum point yields a value 
K N 280 x very distinctly different from the others so that it is advisable to 
consider K as characteristic, in general, of species-solvent pair of which the 
particular cases represented in figure 5 possess similar values. 

The foregoing development concerning the polymeric ‘ amount ’ factor 4 
postulated in connexion with elastic sublayer thickness can now be summarized. 
It was shown first that I+ was related to the difference 6 between polymer solution 
and solvent slopes in Prandtl co-ordinates in the polymeric r6gime of drag 
reduction. From experimental data it was next demonstrated that for dilute 
solutions of random-coiling polymers this slope increment 6 was proportional to 
the square root of polymer concentration. An intrinsic slope increment, n, was 
then defined, ( 17), and shown to vary as the three-halves power of the number 
of backbone chain links, N ,  in the macromolecule. The proportionality con- 
stant, K ,  between II and N3 is nominally a function of polymer species-solvent 
combination but a single value approximately describes all of the present results 
for polymers other than guar gum. Combination of equations (15), (17) and (18) 
leads to the following final experimental relation 

n = K N ~ .  

@ = (.NC/M);trV%[KA,/(A, - An)],  (19) 

where the square bracket is characteristic of a species-solvent pair (recall that 
A,, A ,  are the respective universal slopes of the semi-logarithmic ultimate and 
Newtonian mean velocity profiles). 

Turning next to the factors concerning the ‘excitation’ of a macromolecule by 
the turbulent flow field, it will be recalled that these were embodied in the 
parameter R+*, the value of R+ at the onset of drag reduction. Onset, a striking 
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feature of the Toms phenomenon, has received considerable attention in the 
literature and since the available information has recently been summarized 
(Virk & Merrill 1969) the topic will only be taken up briefly here. Experimentally, 
the flow and polymeric paramebers most relevant to  onset appear to be, respec- 
tively, the onset wall shear stress Tz and the r.m.s. radius of gyration Rg of the 

Polymer 
species Solvent n R, Range A 
PDMS Toluene 0.009 & 0.003 200-1500 Liaw (1968) 

PIB I 
PAM Water 

Source 

Hershey & 

Rodriguez 
Zakin (1967) 

et aE. (1967) 1 Ram, Finkle- 
stein & Elata 

0.0083 k 0-001 1500-4OOO] [ Virk & Baher 

500-1 100 1 300-1100i I Cyclohexane, 0.010 * 0.002 

Benzene, Toluene 

Kcrosene 0.010 * 0.002 

Iranian crude oil 0.0027 & 0.001 J -\ (1967) 

(1970) 
Virk (1971) 

PEO Water 0'0065 2 0'0015 300-2500 Virk et al. 
(1967) 

Benzene 0.0075 2 0.0025 400-1 700 Liaw (1968) 

 TAB^ 6. Onset constants 

E 

. A  
A 

A A 

1 02 
10-1 1 oo 10' 102 103 104 

c, w.p.p.m. 

FIGURE 6. Onset wave-numbers corresponding to slope increment results for the PEO-water 
system as shown in figure 3. 0, 0.292 cm I.D. pipe; A, 3.21 cm I.D. pipe. 

macromolecule in dilute solution. I n  terms of an onset wave-number, IT" = 
u:/vs) formed from T: and solvent viscosity the observed relationship is of the 

(20) 
form : R, W" = Q, 

where i2 is an empirical onset constant (dimensionless) characteristic of a polymer 
species-solvent combination and approximately independent of pipe diameter, 
polymer concentration and homologue molecular weight. Onset constants for 
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some cases of present interest are given in table 6 and the excitation parameter 
R+* canbe ascertained from these inanobviousway. It should be pointed out that 
previously, as in the derivation of ( Z O ) ,  onset has been defined by a visual estimate 
of the point a t  which the polymer solution data depart from solvent. In the present 
work the experimental evaluation of 6, which requires fitting a straight line to  
best represent data for a given polymer solution in Prandtl co-ordinates, yields a 
corresponding onset point, defined by the intersection of the best-fit and solvent 
lines, that will differ from the previous if the data exhibit any curvature on the 
chosen co-ordinates. Themagitude of such differences can be assessed from figure 6 
wherein values of W* corresponding to a portion of the PEQ-water data dis- 
played in figure 3 are plotted; it may be verified that these results are broadly in 
accord with the onset relation ( Z O ) ,  the relatively weak influence of polymer 
concentration being especially evident. Similar results were obtained with all of 
the data presently analyzed and there thus appear to be no important differences 
between onset points associated with 6 and those arrived at  previously. 

3. Theoretical 
Because the macromolecules contained therein are capable of elastic deforma- 

tion, particles of a dilute polymer solution can possess both mean and turbulent 
strain energies in addition to and analogous with the mean and turbulent kinetic 
energies normally associated with Newtonian fluid particles in a turbulent flow 
field. It is our belief that the basic polymer-turbulence interaction responsible for 
drag reduction involves the production of turbulent strain energy and that the 
elastic sublayer of our mean flow model physically represents the region wherein 
this additional entity affects the normal Newtonian energetic processes. If this 
basic premise is proper then the parameters that scale the elastic sublayer, and 
hence drag reduction, should arise from the turbulent strain energy and the 
object of the present section is to devise a theoretical expression for the latter in 
order to interpret the empirical results of the previous section. 

The strain energy, X, per unit of a dilute polymer solution is the molecular 
concentration ( M C / M )  times the strain energy per molecule, s,. From the 
theory of rubber elasticity (Treolar 1958), 

s, = frkT[((L’2)/(L2)) - 13, (21) 

where L is Boltzmann’s constant, T absolute temperature, (L2) the unperturbed 
mean-square end-to-end distance of the macromolecule and (L‘2) the principal 
mean-square end-to-end distance when extended. For small deformations of 
perfectly flexible random-coiling macromolecules in a steady velocity gradient G, 
Peterlin (1963), using the dilute solution model of Zimm (1956), has shown 
theoret,ically that 

[((L’2)/(L2)) - 11 = 0*136p2, 

where the non-dimensional parameter /? is defined by 

28 
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with p the solvent viscosity. A result identical to (22) save for the constant, 
0-1 instead of 0.136, has also been derived by Cerf (1967). The only dircct 
experimental measurements of macromolecular extension are due to Cottrell 
(1968) working with dilute polyisobutylene-decalin solutions in a laminar 
Couette flow; for small deformations the experimental results tend to agree 
with the form of (22) but yield a proportionality constant - 0.01 an order of 
magnitude lower than theoretical. The latter disagreement is believed (Cottrell, 
Merrill & Smith 1969) due to the real polymer chain being less than perfectly 
flexible as assumed in theory and for this reason the universal proportionality 
constant 0.136 in (22) is best replaced by another, P, which is of order as 
found experimentally and could also possibly depend upon chain structure. The 
strain energy in a steady one-dimensional flow is then given by 

X = PkT(NC/M) ( M [ ~ ] , U / J V ~ T ) ~ Q ~ ,  (24) 

with all numerical constants hereafter absorbed into P. In  turbulent flow, 
wherein (24) directly represents the mean strain energy 8, the entity of interest is 
the mean-square turbulent strain energy s'. Now, the response of a macromolecule 
to an external stimulus requires the co-ordinated movement of various sets of its 
individual segments, termed 'modes', and in a turbulent flow the macromolecule 
will necessarily suffer stimulation by the entire spectrum of turbulence. Therefore 
s' can be thought of as being distributed over all modes of the macromolecule at 
all wave-numbers of the turbulent flow field and a typical spectral element of s' 
will thus contain the strain energy associated with, say, the jtli mode of the 
macromolecule at the Eth wave-number. The form of this s' element is obtained by 
analogy with (24) in which the (M[r/]p/NkT) term has dimensions of time and can 
hence be replaced by an element, ri, representing the contribution of the j th  
mode to the macromolecular relaxation time while G2 is replaced by an element, 
kzE(k) dk ,  of the mean-square turbulent strain rate (i.e. the dissipation spectrum) 
where E(lc) is the kinetic energy density at  wave-number k.  The turbulent strain 
energy density is thus of the form 

m 

where the summation extends over all n modes of the macromolecule and, by 
definition, 

s' = B ( k ) d k .  (26) 

Following Zimm (1956) the relaxation time 7j is the product of a fundamental 
molecular time scale T~ and a dimensionless eigenvalue, p j ( j ,  k), which depends 
upon the excitation of that mode by the flow field in question. One can therefore 
factor 70 out of each term of the summation in (25) whilst leaving the associated 
eigenvalue behind and it can further be shown that T~ is proportional to the 
original time group (H[q]p/MkT) provided [r] refers, as is normal, to steady flow 
with zero shear. With this one finally obtains for the local turbulent strain energy 

0 
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Of the two square brackets on the right-hand side of (27) it will be noticed that the 
first consists entirely of molecular parameters associated with a given polymer 
solution whereas the second involves only the excitation of an individual macro- 
molecule by the turbulent flow field. This separation of variables is evidently 
analogous to that employed in the experimental analysis and a closer connexion 
might therefore be sought between the first bracket and the ‘amount ’factor on the 
one hand and the second bracket and the ‘excitation’ factor on the other. 

The first square bracket on the right-hand side of (27) possesses dimensions of 
[length12 and hence its square root represents a fundamental length scale, 9, 
arising from and characteristic of a polymer solution in the present context. The 
M[7] product which occurs inside the bracket can be replaced (Flory 1953) using 

M[7] = @(A2)# = @(Nb2)g, (28) 

where @( = 2.84 x loz3) is Flory’s universal constant, (L2) the mean-square 
end-to-end distance, N the number of backbone chain links and b the effective 
bond length per chain link; the first equality in (28) expresses the M[7] product as 
a hydrodynamic volume per macromolecule whereas the second equality implies 
the usual relation between (L2) and N for Gaussian chains. The fundamental 
polymer solution length scale is thus 

9 = (MC/M)*  Nib3p(P/kT)$( @/M).  (29) 

The first two terms on the right-hand side of (29) also appear in (19) of the 
previous section and the matching exponents on each of these in the respective 
expressions indicate a linear relationship between the empirical entity $ and the 
theoretical length scale 9. While the full physical significance of a linear $, 23 
relationship remains to be examined (note that the proportionality constant 
between $ and 9 m u s t  possess dimensions of inverse length since $ is dimension- 
less), comparison of (29) with (19) further implies that the empirical constant 
K of (18) vary as the molecular group [b3p(P/kT)*] relating t o  the species-solvent 
combination. The present set of data is by no means adequate to test this 
implication by individual species and solvents but it leads to two interesting 
observations for the purposes of which effective bond lengths of all species have 
been included below table 1, solvent viscosities can readily be obtained (all the 
data refer to room temperahre) and the factor P is assumed constant. Notice 
first that of the entries in figure 5, which differ very widely in chemical structure 
but yield much the same values of K ,  the polymer species all possess similar 
effective bond lengths, b - 4if, whereas the solvents all have similar viscosities, 
0.008 k 0.002 poise, so that (b3p) is of the same order in all cases. Secondly, in the 
guar gum-water system, which was a notable exception to the collective curve of 
figure 5, the solvent viscosity is typical of the others but the polymer species 
possesses a cellulosic skeleton with b - 20 A compared with b - 4 d for all of the 
others and the observed K ratio (280/2-3) is of the order of the b3 ratio (20/4)3. 
Both of the above qualitatively agree with the implied dependence of K upon 
molecular parameters and suggest that a modified proportionality constant 
K’ = (K/b3p) ,  physically associated with the dynamic chain deformation factor 
P, would ultimately prove most characteristic of species-solvent combination. It 

28-2 
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might also be noted that the dependence of $4 upon temperature is entirely 
contained within the [b3p(P/kT)g] group; from the known tendencies of b and 
p to decrease with increasing temperature the same might be expected of $ 
though there is yet no experimental evidence whatever in this regard. 

A theoretical linkage between the integral in the second square bracket of the 
turbulent strain energy expression (27) and the empirical excitation parameter 
In (R+/R+*) has not as yet been established. However, two physical insights 
available from inspection are worth noting. First, the bracket in question is 
evidently the usual dissipation integral with all ordinates altered by a (dimension- 
less) summation that couples the macromolecule to the local flow field; for a 
given macromolecule therefore, the major contributions to the integral arise from 
the dissipative wave-numbers or, physically, the local production of turbulent 
strain energy occurs in the eddies responsible for the dissipation of turbulent 
kinetic energy. Secondly, for a Newtonian flow the highest turbulent strain rates 
occur at  the edge of the viscous sublayer, y+ N 10, which must therefore be the 
radial location of maximum s’ prior to onset. Hence the value of the excitation 
integral at  y+ N 10 at the onset of drag reduction is characteristic of incipient 
polymer-turbulence interaction and this should subsequently provide a criterion 
for locating the outer edge of the elastic sublayer during drag reduction. 

4. Discussion 
4.1. Comparison with previous work 

The present ‘elastic sublayer’ mean flow model merits comparison with three 
previous schemes: the ‘effective slip’ model (Oldroyd 1948), the ‘thickened 
laminar sublayer ’ model (Elata et al. 1966, Meyer 1966) and arecent modification 
of the latter (Seyer & Metzner 1969). 

The earliest conjecture concerning mean flow structure during drag reduction 
is due t o  Oldroyd (1948) who postulated an ‘effective slip’ caused by “anomalous 
behaviour in a thin layer near the tube wall ” which “would have no effect on the 
velocity distribution in the turbulent region except to superpose upon it a uniform 
velocity in the direction of flow ”. This effective slip model amounts to a one-zone 
scheme wherein the velocity profile is parallel to but displaced upward from the 
semi-logarithmic Newtonian law of the wall and, from experiments conducted 
since, such a zone has indeed proved a characteristic feature of the mean flow 
structure at  low drag reduction. When the drag reduction is low our model is 
dominated by its outermost zone (zone 3 in $2)  and hence incorporates the 
effective slip model but no quantitative comparison can be made since the latter 
was not formally related to flow and polymeric parameters. 

According to  the thickened laminar sublayer model, originally proposed by 
Elata et al. (1966) and by Meyer (1966), the velocity profile consists of two zones- 
a turbulent core as in the effective slip model and a laminar sublayer extended to 
its intersection with the former and thereby thickened relative to Newtonian. 
Further the displacement of the core from the Newtonian wall law, i.e. the non- 
dimensional ‘effective slip ’ or the increase in the wall constant B, was postulated 
to vary as the logarithm of friction velocity with a proportiona,lity constant a 
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characteristic of the fluid. Evidently the thickened portion of the laminar sub- 
layer in this scheme corresponds to the elastic sublayer of the present model and 
thus the essential conceptual difference lies in the velocity profiles respectively 
associated with these intermediate segments. However, at  low drag reductions 
the outermost region tends to dominate each model (both of which so reduce to 
Oldroyd’s effective slip model) and the friction factor relations derived there- 
from become insensitive to the inner segment velocity profile provided that the 
net result, i.e. the effective slip, is properly specified. Under these circumstances 
it can be shown that the Elata-Meyer ‘fluid property parameter ’ a differs from 
our slope increment 6 only by numerical factors. In regard to evaluation of their 
parameter a from experiments, both the original authors found it to be approxi- 
mately independent of pipe diameter (as postulated) but nothing was, or has 
since, been noted concerning the effect of polymeric parameters save for an 
indication by Elata et al. (1966) that a varied linearly with polymer concentration 
for their guar gum-water system. The latter conflicts with the present finding of a 
square-root, not linear, concentration dependence but the following reasons lead 
us to believe that this disagreement is not particularly serious: first, some earlier 
data (Elata & Tirosh 1965) by the same authors for the same system yield, amongst 
scatter, a variation of a as cQ rather closer to our exponent; second, the data of 
Whittsitt et al. (1968), also for a guar gum-water system, are quite well described 
by our square-root relation as shown in figure 4 ( a ) ;  and third, the a cc c result was 
derived from experiments with a single polymer-solvent system over a limited 
concentration range whereas our S cc c* relationship stems from a somewhat 
larger body of data. The differences between the original thickened laminar 
sublayer scheme and ours become more pronounced as drag reduction increases 
and in the limit the former formally tends to a laminar velocity profile and hence, 
erroneously, to Poiseuille’s friction factor law whereas our scheme was derived 
from and transforms properly to the experimentally-observed maximum drag 
reduction asymptote. Physically, the effects of the polymer-turbulence inter- 
action can be lumped in an anomalous wall region only so long as the outer flow 
dominates; with increasing drag reduction the region of interaction occupies a 
larger fraction of the flow and must therefore be accounted for. Our model 
attempts to do so, through an elastic sublayer wherein the mixing length repre- 
sents the ultimate polymer-turbulence interaction, whereas the thickened 
laminar sublayer model, with no such additional information, is unable to. 

The thickened laminar sublayer model has recently been modified by Xeyer 
& Metzner (1969) who retained the basic two zone structure of the original but 
devised a different empirical function for the wall constant B such that the latter 
asymptotically approaches a maximum value B N 30 (compared with 5.5 for 
Newtonian) with increasing friction velocity. This significantly improves upon 
the high drag reduction behaviour of the original scheme in thab the tendency to 
Poiseuille’s law is eliminated but still differs from our model at asymptotic 
maximum drag reduction as illustrated by figure 7 wherein the experimental 
data of Seyer & Metzner are displayed against their own model, indicated by 
dashed lines, and the present, shown by solid lines. In figure 7 ( a ) ,  U+ zis. logy+, 
it may be seen that outside of the usual viscous sublayer, 0 < y+ < 12, the 
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asymptotic velocity profile in the Seyer-Metzner scheme consists of the thickened 
portion of the laminar sublayer 12 < yf < 40 and a semi-logarithmic portion 
40 < y+ < R f  with Newtonian slope A - 2.5 but asymptotic wall constant 
B N 30 whereas in our model this region 12 < yf < Rf consists entirely of the 
semi-logarithmic segment denoting the ultimate profile with slope A - 11.7 and 
wall constant B N - 17. The experimental data are rather better represented by 
our profile which is interesting but not over significant by itself because both 
model profiles are necessarily approximations. A more important difference is 
that at  high Rf, the former leads t o  a friction factor asymptote which has the 
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FIGURE 7. Comparison betweon present mean flow model and Seyer-Metzner (1969) 
scheme at  asymptotic conditions; data of latter authors as in figure 2 & table 2 .  (a)  Mean 
velocity profile. ( b )  Friction factor. 

same slope as the Newtonian Prandtl-KBrmAn relation (1) but is displaced 
upwards in l/f4 (by an amount N (30 - 5 - 5 ) / 4 2 )  and this is not in accord with the 
experimental maximum drag reduction asymptote (2) implicit in our scheme, as 
shownin figure 7 (b ) ,  l/f*vs. log Refs. It may further be noticed on figure 7 (b )  that 
the Seyer-Metzner asymptote intersects the experimental asymptote in the 
vicinity of the former's experimental data. This is the very region from which 
their empirical asymptotic value of B was derived by fitting the observed friction 
factors to the thickened laminar sublayer scheme; hence their asymptote agrees 
with experimental friction factors in the region of the fit but tends not to follow 
experimental results outside of this region. At low drag reduction the Seyer- 
Metzner scheme tends to the original thickened laminar sublayer model save that 
B is an empirical function of a non-dimensional time formed from the product of 
the relaxation time of the fluid and the wall shear rate. However, the fluid 
relaxation time requires separate experimental evaluation in each case and 
cannot be ascertained a priori; nor has any indication yet been given about its 
dependence upon molecular parameters so no comparisons can be made with the 
present work in this regard. 
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4.2. Practical application 

The practical drag reduction problem is to predict a friction factor-Reynolds 
number relationship for the turbulent flow of an arbitrary but characterized 
polymer solution through agiven pipe and it is therefore appropriate to summarize 
the present findings in this regard. In  Prandtl co-ordinates, l l f t vs .  log (Refl) ,  
the friction factor relationship sought consists, in idealized general form, of three 
straight line segments corresponding to  the flow rkgimes, (i) Newtonian, (ii) 
polymeric, (iii) maximum drag reduction, noted in the introduction. Of these, the 
itsymptotic regimes (i) and (iii) are each independent of polymeric parameters 
and can be described by universal friction factor relationships respectively given 
by equations (1) and (2). The polymeric regime segment (ii), restricted to the 
region between (1)  and (a), intersects the Newtonian segment (i) at  the onset 
point (Ref&)* and possesses a slope exceeding that of the latter by a fractional 
amount A where both (Ref*)“ and A depend upon the polymer solution as follows. 
From (ZO) ,  the onset point is 

(Ref&)* = 2J2Q(R/Rg), (30) 

where R is pipe radius, R, polymer radius of gyration in dilute solution and Q a 
non-dimensional constant characteristic of the polymer species-solvent com- 
bination. Selected onset constants are listed in table 6;  it is worth noting that a 
value Q N 0.008 & 0.003 encompasses practically all the onset results obtained 
thus far for random-coiling polymers in the common ‘thin’, v N 0.01 cm2/sec, 
solvents but there is essentially no information in solvents of significantly 
different viscosity. From (17) ,  (18) the fractional slope increment is 

A = K ( N C / M ) t N g ,  (31) 

where ,N is Avogadro’s number 6.02 x 1023 and the polymeric parameters are 
C concentration as a weight fraction, M molecular weight, N number of backbone 
chain links and K a characteristic constant of the species-solvent combination. 
Data (see figure 5) indicate that for polymer species of carbon-carbon or similar 
types of skeletal structure in thin solvents K - 2-3 x there is also some 
indication that K (and hence A) is further proportional to the group (b3p) where 
b is effective bond length per chain link and ,u solvent viscosity. In a friction 
factor relation obtained a priori as outlined above, the asymptotic segment 
(iii) will provide a reliable ( 5 %) indication of the maximum possible drag 
reduction but the polymeric regime segment (ii) presently permits only a crude 
(within, say, a factor of 2) estimate of the drag reduction to be expected therein. 
However, the remarks concerning calculation of the latter could prove useful for 
the practical problems of correlation and scale-up from limited experimental 
data. 

The author is indebted to Professors F. R. Cottrell and H. S. Mickley of the 
Chemical Engineering Department, M.I.T., for their interest and assistance in 
the preparation of this paper. 
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